

## ALGEBRAIC POLYNOMIALS WITH RANDOM COEFFICIENTS WITH BINOMIAL AND GEOMETRIC PROGRESSION

K. Farahmand and T. Li

Received December 17, 2010

## Abstract

The expected number of real zeros of a polynomial  $a_0 + a_1x + a_2x^2 + \dots + a_nx^n$  with random coefficient  $a_j$ ,  $j = 0, 1, 2, \dots, n$  is known. The distribution of the coefficients is often assumed to be identical albeit allowed to have different classes of distributions. For the non-identical case, there has

been much interest where the variance of the *j*th coefficient is  $var(a_j) = {n \choose i}$ 

It is shown that this class of polynomials has significantly more zeros than the classical algebraic polynomials with identical coefficients. However, in the above case of non-identically distributed coefficients, it is assumed that the means of the coefficients are zero. Here we study a case, when the moments of the coefficients have both binomial and geometric progression

elements. That is, we assume  $E(a_j) = \binom{n}{j} \mu^{j+1}$  and  $var(a_j) = \binom{n}{j} \sigma^{2j}$ . Further

we assume, for any constant k,  $\sigma^2 = k\mu$ .

**Keywords and phrases:** number of real zeros, real roots, random algebraic polynomials, Kac-Rice formula, non-identical random variables.



## ISSN: 2230-9837