ALGEBRAIC POLYNOMIALS WITH RANDOM
 COEFFICIENTS WITH BINOMIAL AND GEOMETRIC PROGRESSION

K. Farahmand and T. Li

Received December 17, 2010

Abstract

The expected number of real zeros of a polynomial $a_{0}+a_{1} x+a_{2} x^{2}+$ $\cdots+a_{n} x^{n}$ with random coefficient $a_{j}, j=0,1,2, \ldots, n$ is known. The distribution of the coefficients is often assumed to be identical albeit allowed
 to have different classes of distributions. For the non-identical case, there has been much interest where the variance of the j th coefficient is $\operatorname{var}\left(a_{j}\right)=\binom{n}{j}$.
It is shown that this class of polynomials has significantly more zeros than the classical algebraic polynomials with identical coefficients. However, in the above case of non-identically distributed coefficients, it is assumed that the means of the coefficients are zero. Here we study a case, when the moments of the coefficients have both binomial and geometric progression elements. That is, we assume $E\left(a_{j}\right)=\binom{n}{j} \mu^{j+1}$ and $\operatorname{var}\left(a_{j}\right)=\binom{n}{j} \sigma^{2 j}$. Further we assume, for any constant $k, \sigma^{2}=k \mu$.

Keywords and phrases: number of real zeros, real roots, random algebraic polynomials, Kac-Rice formula, non-identical random variables.

