

Volume 2, Issue 1, Pages 1-16 (September 2011)

MICROMECHANICAL MODELING IN FATIGUE ANALYSIS OF STEEL SPECIMENS AT LOW TEMPERATURES

Alexander Tesar and Marek Sedlar

Received March 19, 2011

Abstract

Fatigue behaviour of steel specimens at low temperatures is treated in present paper. Micromechanical modeling with running wave approach together with parallel processing technique and back-propagation neural network is used for numerical analysis of the problem. Numerical treatment of the non-linear problems appearing is made using updated Lagrange formulation of motion. Each step of the iteration approaches the solution of the linear problem. Specified are non-linear pseudo-forces with updated back propagation control. Numerical and experimental assessment is submitted in order to demonstrate the efficiency of approaches suggested.

Keywords and phrases: fatigue, FETM-technique, low temperature, micromechanical string, neural networks, parallel processing, pseudo-force technique, running wave approach, steel specimen.

ISSN: 2231-184X