

ON STRICT-DOUBLE-BOUND NUMBERS OF GRAPHS AND SUM OPERATIONS

Yoshihiro Goto, Kenjiro Ogawa, Satoshi Tagusari and Morimasa Tsuchiya

Received January 10, 2017; Revised January 17, 2017

Abstract

For a poset $P = (X, \leq_P)$, the strict-double-bound graph of *P* is the graph sDB(*P*) on V(sDB(P)) = X for which vertices *u* and *v* of sDB(*P*) are adjacent if and only if $u \neq v$ and there exist elements *x*, $y \in X$ distinct from *u* and *v* such that $x \leq_P u \leq_P y$ and $x \leq_P v \leq_P y$. The strict-double-bound number $\zeta(G)$ of a graph *G* is defined as min $\{n; sDB(P) \cong G \cup \overline{K}_n$ for some poset *P*}. We consider strictdouble-bound numbers in terms of sum operations. We obtain that for a connected graph *G* with at least two vertices and a poset *P* such that $sDB(P) \cong G \cup \overline{K}_{\zeta(G)}$,

 $\zeta(G + mK_n) \le \zeta(G) + (m-1) \times \min\{|\operatorname{Min}(P)|, |\operatorname{Max}(P)|\}.$

We also obtain that $\zeta(G) \leq |S| + 2$ for a split graph G with $V(G) = V(K_n) \cup S$.

Keywords and phrases: strict-double-bound graph, strict-double-bound number, sum operation.

ISSN: 2230-9829

Pioneer Journal of Mathematics and Mathematical Sciences

