

INTRODUCTION TO THE MCPHERSON NUMBER, $\Upsilon(G)$ OF A SIMPLE CONNECTED GRAPH

Johan Kok and Susanth C

Received November 3, 2014

Abstract

The concept of the McPherson number of a simple connected graph G on n vertices denoted by $\Upsilon(G)$, is introduced. The recursive concept, called the McPherson recursion, is a series of vertex explosions such that on the first iteration a vertex $v \in V(G)$ explodes to arc (directed edges) to all vertices $u \in V(G)$ for which the edge $vu \notin E(G)$, to obtain the mixed graph G'_1 . Now G'_1 is considered on the second iteration and a vertex $w \in V(G'_1) = V(G)$ may explode to arc to all vertices $z \in V(G'_1)$ if edge $wz \notin E(G)$ and arc (w, z) or $(z, w) \notin E(G'_1)$. The McPherson number of a simple connected graph G is the minimum number of iterative vertex explosions say ℓ , to obtain the mixed graph G'_{ℓ} such that the underlying graph of G'_{ℓ}

denoted G_{ℓ}^* has $G_{\ell}^* \simeq K_n$. We determine the McPherson number for paths, cycles and *n*-partite graphs. We also determine the McPherson number of the finite Jaco Graph $J_n(1)$, $n \in \mathbb{N}$. It is hoped that this paper will encourage further exploratory research.

Keywords and phrases: McPherson number, McPherson recursion, McPherson discrepancy, McPherson stability, Jaco graph.

ISSN: 2230-9829

Pioneer Journal of Mathematics and Mathematical Sciences

