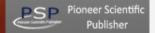


Volume 15, Issues 1-2, Pages 59-76 (March & June 2018)

SOLVING THE CLASS EQUATION $x^d = \beta$ IN AN ALTERNATING GROUP FOR EACH $\beta \in C^\alpha \cap H^c$ AND n > 1

Shuker Mahmood and Andrew Rajah

Received July 01, 2011; Revised February 26, 2013


Abstract

The main purpose of this paper is to solve the class equation $x^d = \beta$ in an alternating group, (This means we try to find the solutions set $X = \{x \in A_n \mid x^d \in A(\beta)\}$) and find the number of these solutions $\mid X \mid$ where β ranges over the conjugacy class $A(\beta)$ in A_n and d is a positive integer. In this paper, we solve the class equation $x^d = \beta$ in A_n where $\beta \in H^c \cap C^\alpha$, for all n > 1. H^c is the complement set of H where $H = \{C^\alpha \text{ of } S_n \mid n > 1, \text{ with all parts } \alpha_k \text{ of } \alpha$ different and odd β . C^α is conjugacy class of β and form class β depends on the cycle type β of its elements. If β is β and β is β and β in the β splits into the two classes β of β .

Keywords and phrases: alternating groups, permutations, conjugate classes, cycle type, Frobenius equation.

ISSN: 2231-1831

Pioneer Journal of Algebra, Number Theory and its Applications

